Add like
Add dislike
Add to saved papers

Formulation, physicochemical characterization and in vitro evaluation of human insulin-loaded microspheres as potential oral carrier.

The objective of the present investigation was to formulate and characterize the human insulin entrapped Eudragit S100 microspheres containing protease inhibitors and to develop an optimized formulation with desirable features. A w/o/w multiple emulsion solvent evaporation technique was employed to produce microspheres of human insulin using Eudragit S-100 as coating material and polyvinyl alcohol as a stabilizer. The resultant microspheres were evaluated for drug-excipient compatibility, encapsulation efficiency, particle size, surface morphology, micromeritic properties, enteric nature, and in vitro drug release studies. Micromeritic properties indicated good flow properties and compressibility. In present investigation formulation F6 with drug/polymer ratio (1:100) was found to be optimal in terms of evaluated parameters where it showed a significantly higher percentage of encapsulation efficiency (76.84%) with minimal drug release (3.25%) in an acidic environment. The optimized formulation (F6) also possessed good spherical shape and particle size (57.42 µm) required to achieve the desired in vitro drug release profile at pH 7.4. The results confirmed that human insulin-loaded Eudragit S-100 microspheres containing protease inhibitor possessed good encapsulation efficiency, pH dependant controlled release carrying encapsulated insulin to its optimum site of absorption. This ultimately resulted in enhanced insulin absorption and biological response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app