Add like
Add dislike
Add to saved papers

Intracoronary Optical Coherence Tomography-Derived Virtual Fractional Flow Reserve for the Assessment of Coronary Artery Disease.

Fractional flow reserve (FFR) is widely used for the assessment of myocardial ischemia. Optical coherence tomography (OCT) provides accurate visualization of coronary artery morphology. The aim of this study was to investigate the relation between FFR and OCT-derived FFR. We retrospectively analyzed 31 lesions (25 left anterior descending arteries, 2 left circumflex arteries, and 4 right coronary arteries) in 31 patients with moderate-to-severe coronary stenosis, who underwent OCT and FFR measurements simultaneously. OCT-derived FFR was calculated by the original algorithm, which was calculated using the following equation based on fluid dynamics: ΔP = FV + SV(2), where V is the flow velocity, F is the coefficient of pressure loss because of viscous friction (Poiseuille resistance), and S is the coefficient of local pressure loss because of abrupt enhancement (flow separation). Mean values of % diameter stenosis by quantitative coronary angiography and FFR were 55.2 ± 14.0% and 0.70 ± 0.14, respectively. OCT-derived FFR showed a stronger linear correlation with FFR measurements (r = 0.89, p <0.001; root mean square error = 0.062 FFR units) than quantitative coronary angiography % diameter stenosis (r = -0.65, p <0.001), OCT measurements of minimum lumen area (r = 0.68, p <0.001), and % area stenosis (r = -0.70, p <0.001). OCT-derived FFR has the potential to become an alternative method for the assessment of functional myocardial ischemia, and may elucidate the relation between coronary morphology and FFR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app