Add like
Add dislike
Add to saved papers

Solid phase microextraction and gas chromatography coupled to magnetic sector high resolution mass spectrometry for the ultra-trace determination of contaminants in surface water.

With the aim of monitoring water quality according to the regulations established by the European Union it would be necessary to implement analytical methodologies capable of simultaneously determining a broad range of organic pollutants at ultra-trace levels, allowing for increased sample throughput. In addition, the high number of samples to be analyzed requires a particular focus on setting up fully automated analytical methodologies. In view of that, this study is aimed at the development of a complete automated procedure for the ultra-trace determination of certain pesticides, polycyclic aromatic hydrocarbons (PAHs), brominated diphenyl ethers (BDEs) and polychlorinated biphenyls (PCBs) in surface waters. The proposed method is based on an on-line combination of solid phase microextraction (SPME) and gas chromatography coupled to double-focusing magnetic sector high resolution mass spectrometry (GC-HRMS). SPME as well as GC-HRMS conditions were optimized to achieve maximum extraction efficiency and sensitivity, which was reinforced by using multiple ion detection (MID) as acquisition mode. Using only 19mL of water and with minimum sample manipulation, the method allowed for the determination of 53 compounds exhibiting good linearity (R2 >0.99), recoveries between 84 and 118% and relative standard deviation (RSD) values <20% for intra-day and inter-day precision. In addition, the method provides quantification limits (LOQs) between 0.1-50ngL-1 , lower than the Environmental Quality Standards (EQS) fixed by Directive 2013/39/EC. Finally, the method was successfully applied to determine target contaminants in Almería surface water compartments, detecting dioxin-like PCBs, BDEs and some pesticides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app