Add like
Add dislike
Add to saved papers

Molecular dynamics study of the potential of mean force of SDS aggregates.

In our previous study, all-atomistic molecular dynamics (MD) calculations have been carried out for the aggregation of ionic sodium dodecyl sulfate in water [S. Kawada et al., Chem. Phys. Lett. 646, 36 (2016)]. Aggregates of 20-30 dodecyl sulfate ions were formed within a short MD run for 10 ns. However, further aggregation did not occur despite a long MD calculation for more than 100 ns. This suggests that strong electrostatic repulsive interactions between the aggregates prevent the fusion of the aggregates. In the present study, mean force and potential of mean force acting between two aggregates with aggregation number N = 30 were evaluated as a function of their separation by MD calculations. The repulsive force becomes strong with decreasing distance between the two aggregates before they merge into one. An origin of the repulsive force is an electric double layer formed by the sulfate group and counter sodium ions. Strength of the repulsive force is in good agreement with the theoretical value given by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Once the aggregates establish contact, the force between them turns to be a large attractive force that can be explained by the interfacial tension. In order to form a single micelle from the two aggregates, it is necessary for them to climb over a free energy barrier of 23 kJ/mol. Once, the barrier is overcome, the micelle is stabilized by ∼200 kJ/mol. The time constant of aggregation evaluated from the calculated free energy barrier was about 28 μs at the concentration in our previous study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app