Add like
Add dislike
Add to saved papers

Modelling CO 2 emissions from water surface of a boreal hydroelectric reservoir.

To quantify CO2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm-2 day-1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm-2 yr-1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO2 emissions by enhancing CO2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO2 fluxes and CO2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app