Add like
Add dislike
Add to saved papers

Interfacial Assembly and Jamming Behavior of Polymeric Janus Particles at Liquid Interfaces.

The self-assembly and interfacial jamming of spherical Janus nanoparticles (JNPs) at the water/oil interface were investigated. Polymeric JNPs, made by cross-linking polystyrene-block-polybutadiene-block-poly(methyl methacrylate) (PS-PB-PMMA), with a high interfacial activity assemble at the water/oil interface. During the self-assembly at the interface, the interfacial energy was reduced and a dynamic interlayer was observed that is responsive to the pH of the aqueous phase. Unlike hard particles, the JNPs are composed of polymer chains that can spread at the liquid-liquid interface to maximize coverage at relatively low areal densities. In a pendant drop geometry, the interfacial area of a water droplet in oil was significantly decreased and the JNPs were forced to pack more closely. Entangling of the polymer chains causes the JNPs to form a solid-like interfacial assembly, resulting in the formation of wrinkles when the interfacial area is decreased. The wrinkling behavior, the retention of the wrinkles, or the slow relaxation of the liquid drop back to its original equilibrium shape was found to depend upon the pH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app