Add like
Add dislike
Add to saved papers

Fetal Bone Marrow-Derived Mesenchymal Stem/Stromal Cells Enhance Humanization and Bone Formation of BMP7 Loaded Scaffolds.

Biotechnology Journal 2017 December
Tissue engineered constructs built with human cells capable of generating a bone-like organ within the mouse have attracted considerable interest over the past decade. Here, we aimed to compare the utility of human mesenchymal stem/stromal cells (MSC) isolated from fetal term placenta (fPL-MSC) and fetal first trimester bone marrow (fBM-MSC) in a polycaprolactone scaffold/BMP7-based model in nude mice. Furthermore, fPL-MSC were co-seeded with fetal placenta-derived endothelial colony forming cells (ECFC) to assess the impact of ECFC on fPL-MSC osteogenesis. X-ray radiography and micro computed tomography analyses showed enhanced bone formation in all BMP7 groups; however there was no difference after 2 months in bone formation between scaffolds seeded with fPL-MSC alone or combination of ECFC and fPL-MSC. Of interest, fBM-MSC showed the highest level of bone formation. Additionally, endochondral ossification contributed in generation of bone in fBM-MSC. Histological analysis showed the primary role of BMP in generation of cortical and trabecular bone, and the recruitment of hematopoietic cells to the scaffolds. Current in vivo engineered bone organs can potentially be used for drug screening or as models to study bone tissue development in combination with haematopoiesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app