Add like
Add dislike
Add to saved papers

Evaluation of brain-targeted chitosan nanoparticles through blood-brain barrier cerebral microvessel endothelial cells.

The blood-brain barrier (BBB) is the major problem for the treatment of central nervous system diseases. A previous study from our group showed that the brain-targeted chitosan nanoparticles-loaded with large peptide moieties can rapidly cross the barrier and provide neuroprotection. The present study aims to determine the efficacy of the brain-targeted chitosan nanoparticles' uptake by the human BBB cerebral microvessel endothelial cells (hCMECs) and to investigate the underlying mechanisms for enhanced cellular entry. Fluorescently labelled nanoparticles either conjugated with antibodies recognising human transferrin receptor (anti-TfR mAb) or not were prepared, characterised and their interaction with cerebral endothelial cells was evaluated. The antibody decoration of chitosan nanoparticles significantly increased their entry into hCMEC/D3 cell line. Inhibition of cellular uptake by chlorpromazine indicated that the anti-TfR mAb-conjugated nanoparticles were preferentially cell internalised through receptor-mediated endocytosis pathway. Alternatively, as primarily observed with control chitosan nanoparticles, aggregation of nanoparticles may also have induced macropinocytosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app