Add like
Add dislike
Add to saved papers

Combination of quercetin, cinnamaldehyde and hirudin protects rat dorsal root ganglion neurons against high glucose-induced injury through Nrf-2/HO-1 activation and NF-κB inhibition.

OBJECTIVE: To examine the effects of the combination of quercetin (Q), cinnamaldehyde (C) and hirudin (H), a Chinese medicine formula on high glucose (HG)-induced apoptosis of cultured dorsal root ganglion (DRG) neurons.

METHODS: DRG neurons exposed to HG (45 mmol/L) for 24 h were employed as an in vitro model of diabetic neuropathy. Cell viability, reactive oxygen species (ROS) level and apoptosis were determined. The expression of nuclear factor of Kappa B (NF-κB), inhibitory kappa Bα(IκBα), phosphorylated IκBα and Nf-E2 related factor 2 (Nrf2) were examined using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay. The expression of hemeoxygenase-1 (HO-1), interleukin-6 (IL-6), tumor necrosis factor (TNF-α) and caspase-3 were also examined by RT-PCR and Western blot assay.

RESULTS: HG treatment markedly increased DRG neuron apoptosis via increasing intracellular ROS level and activating the NF-κB signaling pathway (P<0.05). Co-treatment with Q, C, H and their combination decreased HG-induced caspase-3 activation and apoptosis (P<0.05 or P<0.01). The expressions of NF-κB, IL-6 and TNF-α were down-regulated, and Nrf2/HO-1 expression was up-regulated (P<0.05 or P<0.01). QCH has better effect in scavenging ROS, activating Nrf-2/HO-1, and down-regulating the NF-κB pathway than other treatment group.

CONCLUSIONS: DRG neurons' apoptosis was increased in diabetic conditions, which was reduced by QCH formula treatment. The possible reason could be activating Nrf-2/HO-1 pathway, scavenging ROS, and inhibition of NF-κB activation. The effect of QCH combination was better than each monomer or the combination of the two monomers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app