Add like
Add dislike
Add to saved papers

Predicting Major Adverse Kidney Events among Critically Ill Adults Using the Electronic Health Record.

Prediction of major adverse kidney events in critically ill patients may help target therapy, allow risk adjustment, and facilitate the conduct of clinical trials. In a cohort comprised of all critically ill adults admitted to five intensive care units at a single tertiary care center over one year, we developed a logistic regression model for the outcome of Major Adverse Kidney Events within 30 days (MAKE30), the composite of persistent renal dysfunction, new renal replacement therapy (RRT), and in-hospital mortality. Proposed risk factors for the MAKE30 outcome were selected a priori and included age, race, gender, University Health System Consortium (UHC) expected mortality, baseline creatinine, volume of isotonic crystalloid fluid received in the prior 24 h, admission service, intensive care unit (ICU), source of admission, mechanical ventilation or receipt of vasopressors within 24 h of ICU admission, renal replacement therapy prior to ICU admission, acute kidney injury, chronic kidney disease as defined by baseline creatinine value, and renal failure as defined by the Elixhauser index. Among 10,983 patients in the study population, 1489 patients (13.6%) met the MAKE30 endpoint. The strongest independent predictors of MAKE30 were UHC expected mortality (OR 2.32 [95%CI 2.06-2.61]) and presence of acute kidney injury at ICU admission (OR 4.98 [95%CI 4.12-6.03]). The model had strong predictive properties including excellent discrimination with a bootstrap-corrected area-under-the-curve (AUC) of 0.903, and high precision of calibration with a mean absolute error prediction of 1.7%. The MAKE30 composite outcome can be reliably predicted from factors present within 24 h of ICU admission using data derived from the electronic health record.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app