Add like
Add dislike
Add to saved papers

The Role of Secondary Calciprotein Particles in the Mineralisation Paradox of Chronic Kidney Disease.

Mineralisation paradox is prevalent in chronic kidney disease and ageing where increased vascular calcification is accompanied by reduced bone mineralisation and osteopenia. Secondary calciprotein particles (CPP2), colloidal nanoparticles containing hydroxyapatite crystal stabilised by a protein shell, have been implicated in vascular calcification in chronic kidney disease. Here, we describe the effect of CPP2 on osteoblasts and vascular smooth muscle cells (VSMC) mineralisation in an in vitro model system. The mineralisation paradox can be simulated in vitro by the addition of phosphate ions (Pi, 3 mM) and CPP2 (10 µg/ml of Ca equivalent). Pi alone induced osteoblast mineralisation but had no effect on VSMC mineralisation. CPP2 alone had no effect on mineralisation in either cell line, but when combined with elevated Pi, reduced osteoblast-like mineralisation (P < 0.001) whilst induced VSMC mineralisation (P < 0.001). These results suggest that in an in vitro system the synergistic interaction between Pi and CPP2 could mimic the mineralisation paradox, and may provide a potential mechanistic link to explain these clinical observations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app