Add like
Add dislike
Add to saved papers

Comparing intensities and modalities within the sensory attenuation paradigm: Preliminary evidence.

It is well-documented that the intensity of a self-generated somatosensory stimulus is perceived to be attenuated in respect to an identical stimulus generated by others. At present, it is not clear whether such a phenomenon, known as somatosensory attenuation, is based not only on feedforward motor signals but also on re-afferences towards the body. To answer this question, in the present pilot investigation on twelve healthy subjects, three types of stimulations (sensory non-nociceptive electrical - ES, nociceptive electrical - NES, and vibrotactile - VTS) and intensities (1 = sensory threshold ∗ 2.5 + 2 mA, 2 = sensory threshold ∗ 2.5 + 3 mA, 3 = sensory threshold ∗ 2.5 + 4 mA for ES and NES; 1 = sensory threshold ∗ 2 Hz, 2 = sensory threshold ∗ 3 Hz, 3 = sensory threshold ∗ 4 Hz for VTS) have been directly compared in a somatosensory attenuation paradigm. The results show that the attenuation effect emerged only with electrical stimuli and that it increased with higher intensities. These pilot findings suggest that, depending on the type and the intensity of stimulation, re-afferences can have a role in somatosensory attenuation. Additionally, it is possible to speculate the effect is present only with electrical stimuli because those stimuli are prospectively judged as potentially dangerous. This, in turn, would optimize planning successful reactions to incoming threatening stimuli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app