Add like
Add dislike
Add to saved papers

The novel link between planar möbius aromatic and third order nonlinear optical properties of metal-bridged polycyclic complexes.

Scientific Reports 2017 August 32
Metal-bridged polcyclic aromatic complexes, exhibiting unusual optical effects such as near-infrared photoluminescence with particularly large Stokes shifts, long lifetimes and aggregation enhancement, have been established as unique "carbonloong chemistry". Herein, the electronic structures, aromaticities, absorption spectra and third order nonlinear optical (NLO) responses of metal-bridged polcyclic aromatic complexes (M = Fe, Re, Os and Ir) are investigated using the density functional theory computations. It is found that the bridge-head metal can stabilize and influence rings, thus creating π-, σ- and metalla-aromaticity in an extended, π-conjugated framework. Interestingly, metal radius greatly influence the bond, aromaticity, liner and third order NLO properties, which reveals useful information to develop new applications of metal regulatory mechanism in NLO materials field. Significantly, the novel relationship between the aromaticity and third order NLO response has firstly been proposed, that the metal-bridged polycyclic complex with larger aromaticity will exhibit larger third order nonlinear optical response. It is our expectation that the novel link between aromaticity and NLO response could provide valuable information for scientists to develop the potential NLO materials on the basis of metal-bridged polycyclic complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app