JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Physiologically Based Pharmacokinetic Model of the CYP2D6 Probe Atomoxetine: Extrapolation to Special Populations and Drug-Drug Interactions.

Physiologically based pharmacokinetic (PBPK) modeling of drug disposition and drug-drug interactions (DDIs) has become a key component of drug development. PBPK modeling has also been considered as an approach to predict drug disposition in special populations. However, whether models developed and validated in healthy populations can be extrapolated to special populations is not well established. The goal of this study was to determine whether a drug-specific PBPK model validated using healthy populations could be used to predict drug disposition in specific populations and in organ impairment patients. A full PBPK model of atomoxetine was developed using a training set of pharmacokinetic (PK) data from CYP2D6 genotyped individuals. The model was validated using drug-specific acceptance criteria and a test set of 14 healthy subject PK studies. Population PBPK models were then challenged by simulating the effects of ethnicity, DDIs, pediatrics, and renal and hepatic impairment on atomoxetine PK. Atomoxetine disposition was successfully predicted in 100% of healthy subject studies, 88% of studies in Asians, 79% of DDI studies, and 100% of pediatric studies. However, the atomoxetine area under the plasma concentration versus time curve (AUC) was overpredicted by 3- to 4-fold in end stage renal disease and hepatic impairment. The results show that validated PBPK models can be extrapolated to different ethnicities, DDIs, and pediatrics but not to renal and hepatic impairment patients, likely due to incomplete understanding of the physiologic changes in these conditions. These results show that systematic modeling efforts can be used to further refine population models to improve the predictive value in this area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app