Add like
Add dislike
Add to saved papers

An ex vivo experiment to reproduce a forward fall leading to fractured and non-fractured radii.

Forward falls represent a risk of injury for the elderly. The risk is increased in elderly persons with bone diseases, such as osteoporosis. However, half of the patients with fracture were not considered at risk based on bone density measurement (current clinical technique). We assume that loading conditions are of high importance and should be considered. Real loading conditions in a fall can reach a loading speed of 2m/s on average. The current study aimed to apply more realistic loading conditions that simulate a forward fall on the radius ex vivo. Thirty radii from elderly donors (79y.o.±12y.o., 15 males, 15 females) were loaded at 2m/s using a servo-hydraulic testing machine to mimic impact that corresponds to a fall. Among the 30 radii, 14 had a fracture after the impact, leading to two groups (fractured and non-fractured). Surfacic strain fields were measured using stereovision and allow for visualization of fracture patterns. The average maximum load was 2963±1274N. These experimental data will be useful for assessing the predictive capability of fracture risk prediction methods such as finite element models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app