JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Huntington Mice Demonstrate Diminished Pain Response in Inflammatory Pain Model.

BACKGROUND: Huntington disease (HD) affects the nervous system and leads to mental and motor dysfunction. Previous studies have shown that HD is caused by the exon 1 region of the huntingtin (HTT) gene having expanded CAG trinucleotide repeats. However, few studies have focused on the relationship between HD and pain. The purpose of this study is to investigate the relationship between HD and pain response.

METHODS: We used clinical similar transgenic HD mice carrying a mutant HTT exon 1 containing 84 CAG trinucleotide repeats to evaluate the relationship between HD and pain. Inflammatory pain models were induced by either formalin or complete Freund adjuvant injection over the hind paw. Spinal cord, dorsal root ganglion, and paw skin tissues were harvested at the end of the behavioral inflammatory pain studies. Immunofluorescence assay, Western blotting, and enzyme-linked immunosorbent assay were used to identify changes in cells and cytokines.

RESULTS: Our data demonstrate that preonset HD mice exhibited less pain behavior than wild-type (WT) mice in both young (n = 11 [WT], 13 [HD]) and aged (n = 8 [WT], 9 [HD]) mice. Western blotting and immunohistological examination of lumbar spinal cord tissue and dorsal root ganglion indicate less activation of glial cells and astrocytes in young HD mice (n = 6-7) compared to that in WT mice (n = 6-7). The production levels of tumor necrosis factor-α, interleukin-1β, and substance P were also lower in young HD mice (n = 6-7).

CONCLUSIONS: Our data demonstrate less pain behavior and pain-related cytokine response at the spinal cord level for HD mice compared to those for WT mice. Further studies are needed for determining the mechanism as to how mutant HTT leads to altered pain behavior and pain-related cytokine response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app