Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sparse Recovery in Magnetic Resonance Imaging With a Markov Random Field Prior.

Recent research in compressed sensing of magnetic resonance imaging (CS-MRI) emphasizes the importance of modeling structured sparsity, either in the acquisition or in the reconstruction stages. Subband coefficients of typical images show certain structural patterns, which can be viewed in terms of fixed groups (like wavelet trees) or statistically (certain configurations are more likely than others). Wavelet tree models have already demonstrated excellent performance in MRI recovery from partial data. However, much less attention has been given in CS-MRI to modeling statistically spatial clustering of subband data, although the potentials of such models have been indicated. In this paper, we propose a practical CS-MRI reconstruction algorithm making use of a Markov random field prior model for spatial clustering of subband coefficients and an efficient optimization approach based on proximal splitting. The results demonstrate an improved reconstruction performance compared with both the standard CS-MRI methods and the recent related methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app