Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of a Fluid Dynamic Model for Quantitative Contrast-Enhanced Ultrasound Imaging.

Contrast-enhanced ultrasound (CEUS) is a non-invasive imaging technique extensively used for blood perfusion imaging of various organs. This modality is based on the acoustic detection of gas-filled microbubble contrast agents used as intravascular flow tracers. Recent efforts aim at quantifying parameters related to the enhancement in the vascular compartment using time-intensity curve (TIC), and at using these latter as indicators for several pathological conditions. However, this quantification is mainly hampered by two reasons: first, the quantification intrinsically solely relies on temporal intensity variation, the explicit spatial transport of the contrast agent being left out. Second, the exact relationship between the acquired US-signal and the local microbubble concentration is hardly accessible. This paper introduces the use of a fluid dynamic model for the analysis of dynamic CEUS (DCEUS), in order to circumvent the two above-mentioned limitations. A new kinetic analysis is proposed in order to quantify the velocity amplitude of the bolus arrival. The efficiency of proposed methodology is evaluated both in-vitro, for the quantitative estimation of microbubble flow rates, and in-vivo, for the classification of placental insufficiency (control versus ligature) of pregnant rats from DCEUS. Besides, for the in-vivo experimental setup, we demonstrated that the proposed approach outperforms the performance of existing TIC-based methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app