Add like
Add dislike
Add to saved papers

Nicotinic acetylcholine receptor alpha 7 stimulation dampens splenic myelopoiesis and inhibits atherogenesis in Apoe -/- mice.

Atherosclerosis 2017 October
BACKGROUND AND AIMS: Monocyte levels predict cardiovascular outcomes and play a causal role in atherogenesis. Monocytes can be produced in the spleen and track to the atherosclerotic lesion in significant numbers. The cholinergic system has been shown to have anti-inflammatory actions in the spleen. We aimed to explore whether therapeutic stimulation of the nicotinic acetylcholine receptor alpha 7 (nAChRα7) can suppress atherogenesis.

METHODS: Apoe-/- mice were placed on a Western-type diet and treated with bi-daily injections of the nAChRα7 agonist GTS-21 or vehicle every 2-3 days for 8 weeks.

RESULTS: GTS-21 caused a reduction in atherosclerosis in the aortic arch and proximal aorta. This also resulted in less plaque macrophages. Moreover, GTS-21 reduced the abundance of blood monocytes, which was caused by inhibition of inflammatory cytokines and extramedullary hematopoiesis in the spleen, along with splenic monocytes.

CONCLUSIONS: Stimulation of nAChRα7 with GTS-21 reduced atherosclerosis, which was associated with dampened splenic myelopoiesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app