Add like
Add dislike
Add to saved papers

Synthesis of TiO 2 @g-C 3 N 4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light.

Novel rutile TiO2 @g-C3 N4 core-shell photocatalysts were synthesized by a facile saturated aqueous solution method. The composites were further characterized by using X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), UV-visible light diffusion reflectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS) and so on. The results indicated that an ultrathin layer of g-C3 N4 was in-situ fabricated over the surface of rutile TiO2 nanorod. The rutile TiO2 @ g-C3 N4 core-shell structures showed much higher photo-current and photocatalytic activity for Rhodamine B (RhB) degradation under visible irradiation. The enhanced performance was attributed to the high separation efficiency of photo-induced carriers via a Z-scheme form.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app