Add like
Add dislike
Add to saved papers

A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism.

Nanoscale 2017 September 15
Desalination is a sustainable process that removes sodium and chloride ions from seawater. Herein, we demonstrate a faradaic mechanism to promote the capacity of capacitive deionization in highly concentrated salt water via an electrochemical deionization device. In this system, ion removal is achieved by the faradaic mechanism via a constant current operation mode, which is improved based on the constant voltage operation mode used in the conventional CDI operation. Benefiting from the high capacity and excellent rate performance of Prussian blue as an active electrochemical reaction material, the designed unit has revealed a superior removal capacity with an ultrafast ion removal rate. A high removal capacity of 101.7 mg g-1 has been obtained with proper flow rate and current density. To further improve the performance of the EDI, a reduced graphene oxide with nanopores and Prussian blue composite has been synthesized. The PB@NPG has demonstrated a high salt removal capacity of 120.0 mg g-1 at 1 C with an energy consumption of 6.76 kT per ion removed, which is much lower than most CDI methods. A particularly high rate performance of 0.5430 mg g-1 s-1 has been achieved at 40 C. The faradaic mechanism promoted EDI has provided a new insight into the design and selection of host materials for highly concentrated salt water desalination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app