Add like
Add dislike
Add to saved papers

Combined In Silico and In Vitro Approach Predicts Low Wall Shear Stress Regions in a Hemofilter that Correlate with Thrombus Formation In Vivo.

A major challenge in developing blood-contacting medical devices is mitigating thrombogenicity of an intravascular device. Thrombi may interfere with device function or embolize from the device to occlude distant vascular beds with catastrophic consequences. Chemical interactions between plasma proteins and bioengineered surface occur at the nanometer scale; however, continuum models of blood predict local shear stresses that lead to platelet activation or aggregation and thrombosis. Here, an iterative approach to blood flow path design incorporating in silico, in vitro, and in vivo experiments predicted the occurrence and location of thrombi in an implantable hemofilter. Low wall shear stress (WSS) regions identified by computational fluid dynamics (CFD) predicted clot formation in vivo. Revised designs based on CFD demonstrated superior performance, illustrating the importance of a multipronged approach for a successful design process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app