Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of FSTL1 on the proliferation and motility of breast cancer cells and vascular endothelial cells.

Thoracic Cancer 2017 November
BACKGROUND: Treatments that prevent the motility of breast cancer cells and inhibit formation of new capillary vessels are urgently needed. FSTL1 is a secreted protein that has been implicated in maintaining the normal physiological function of the cardiovascular system, in addition to a variety of other biological functions. We investigated the role of FSTL1 in the proliferation and migration of breast cancer and vascular endothelial cells.

METHODS: Human umbilical vein endothelial cells and human breast cancer BT-549 cells were used to test the effects of FSTL1 and the N-terminal domain of FSTL1. Immunofluorescence microscopy and 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide, transwell invasion, and wound healing assays were conducted.

RESULTS: Different doses of the N-terminal fragment of FSTL1 (FSTL-N) have variable effects on the migration of these cells. However, FSTL1 does not significantly affect tube formation in vitro from vascular endothelial cells. FSTL1-FL and FSTL1-N have modest effects on the invasion of breast cancer and vascular endothelial cells. Interestingly, FSTL1-FL, but not FSTL-N, modulates vascular endothelial cell polarization.

CONCLUSION: FSTL1 modestly affects the proliferation of breast cancer cells and vascular endothelial cells. Our findings improve our understanding of the functions of FSTL1 in breast cancer development and angiogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app