Add like
Add dislike
Add to saved papers

Endothelial Cells Promote Formation of Medulloblastoma Stem-Like Cells via Notch Pathway Activation.

The aim of the study is to investigate whether endothelial cells (ECs) promoted the capacity of stem-like cell formation in medulloblastoma (MB) and whether the mechanism of action was associated with mediation of Notch signaling pathway. Co-culture experiment was conducted to particularly understand the potential role of ECs in promoting phenotype and gene expression of MB stem-like cells. Self-renewal capacity and tumor cell population were measured by sphere-forming assay and flow cytometry, respectively. To further clarify the effects of ECs on the formation of MB stem-like cells, the expression of genes and protein in MB stem-like cells (CCND1, CDK6, c-MYC, and Bmi-1) and Notch (Notch2, Jagged 1, Hes-1, and Hey-2) was quantified by quantitative real-time PCR (qRT-PCR) and western blot, respectively. Also, observed mediation of ECs in regulation of tumor cell stemness by Notch activation was observed when the co-cultures were treated with γ-secretase inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT)). Further investigation was conducted for the effects of ECs on the tumorigenesis in vivo of MB cells when co-cultures were inoculated into a nude mouse after treated with DAPT. Afterwards, tumor size and volume were measured. The sphere-forming rate and cell ratio of stem-like cells were significantly increased. Furthermore, the expression of genes and protein in stem-like cells and Notch was obviously upregulated although treated with γ-secretase inhibitor. Moreover, tumor size and volume were dramatically magnified. This study revealed that Notch pathway activation played a key role in the formation of stem-like cells in MB and had valuable meaning for further investigation of targeted therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app