JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

TCR-like antibodies mediate complement and antibody-dependent cellular cytotoxicity against Epstein-Barr virus-transformed B lymphoblastoid cells expressing different HLA-A*02 microvariants.

Scientific Reports 2017 August 31
Epstein-Barr virus (EBV) is a common gammaherpesvirus associated with various human malignancies. Antibodies with T cell receptor-like specificities (TCR-like mAbs) provide a means to target intracellular tumor- or virus-associated antigens by recognising their processed peptides presented on major histocompatibility complex (MHC) class I (pMHC) complexes. These antibodies are however thought to be relevant only for a single HLA allele. Here, we show that HLA-A*02:01-restricted EBV antigenic peptides EBNA1562-570 , LMP1125-133 and LMP2A426-434 display binding degeneracy towards HLA-A*02 allelic microvariants, and that these pMHC complexes are recognised by anti-EBV TCR-like mAbs E1, L1 and L2 raised in the context of HLA-A*02:01. These antibodies bound endogenously derived pMHC targets on EBV-transformed human B lymphoblastoid cell lines expressing A*02:01, A*02:03, A*02:06 and A*02:07 alleles. More importantly, these TCR-like mAbs mediated both complement-dependent and antibody-dependent cellular cytotoxicity of these cell lines in vitro. This finding suggests the utility of TCR-like mAbs against target cells of closely related HLA subtypes, and the potential applicability of similar reagents within populations of diverse HLA-A*02 alleles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app