Add like
Add dislike
Add to saved papers

Celecoxib normalizes the tumor microenvironment and enhances small nanotherapeutics delivery to A549 tumors in nude mice.

Scientific Reports 2017 August 31
Barriers presented by the tumor microenvironment including the abnormal tumor vasculature and interstitial matrix invariably lead to heterogeneous distribution of nanotherapeutics. Inspired by the close association between cyclooxygenase-2 (COX-2) and tumor-associated angiogenesis, as well as tumor matrix formation, we proposed that tumor microenvironment normalization by COX-2 inhibitors might improve the distribution and efficacy of nanotherapeutics for solid tumors. The present study represents the first time that celecoxib, a special COX-2 inhibitor widely used in clinics, was explored to normalize the tumor microenvironment and to improve tumor nanotherapeutics delivery using a human-derived A549 tumor xenograft as the solid tumor model. Immunofluorescence staining of tumor slices demonstrated that oral celecoxib treatment at a dose of 200 mg/kg for two weeks successfully normalized the tumor microenvironment, including tumor-associated fibroblast reduction, fibronectin bundle disruption, tumor vessel normalization, and tumor perfusion improvement. Furthermore, it also significantly enhanced the in vivo accumulation and deep penetration of 22-nm micelles rather than 100-nm nanoparticles in tumor tissues by in vivo imaging and distribution experiments and improved the therapeutic efficacy of paclitaxel-loaded micelles in tumor xenograft-bearing mouse models in the pharmacodynamics experiment. As celecoxib is widely and safely used in clinics, our findings may have great potential in clinics to improve solid tumor treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app