Add like
Add dislike
Add to saved papers

Triton X-100 combines with chymotrypsin: A more promising protocol to prepare decellularized porcine carotid arteries.

BACKGROUND: Morbidity and mortality of cardiovascular diseases are increasing in recent years. To solve these problems, vascular transplantation has become a common approach. Decellularization has been a hot spot of tissue engineering to prepare vessel substitutes for vascular transplantation. However, there is no established canonical protocol for decellularization thus far.

OBJECTIVE: To further understand the decellularization effect of decellularization protocols and the causal relationship between decellularization and mechanical properties.

METHODS: Three decellularization protocols including two chemical protocols based on SDS and Trypsin respectively and a combination of Triton X-100 with chymotrypsin were adopted to obtain decellularized porcine carotid arteries in our study. After decellularization, histological analysis, scanning electron microscopy and mechanical tests were performed to evaluate their efficiency on removing of cellular components, retention of extracellular matrix and influence on mechanical properties.

RESULTS: All these decellularization protocols used in our study were efficient to remove cellular components. However, SDS and trypsin performed more disruptive effect on ECM structure and mechanical properties of native arteries while Triton X-100 combines with chymotrypsin had no significant disruptive effect.

CONCLUSIONS: Compared with decellularization protocols based on SDS and trypsin, Triton X-100 combines with chymotrypsin used in our study may be a more promising protocol to prepare decellularized porcine carotid arteries for vascular tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app