Add like
Add dislike
Add to saved papers

In vitro evaluation of collagen immobilization on polytetrafluoroethylene through NH3 plasma treatment to enhance endothelial cell adhesion and growth.

BACKGROUND: Polytetrafluoroethylene (PTFE) is poorly biocompatible due to its low surface energy and hydrophobicity, which cause weak cell attachment and proliferation and complicate its use in implants.

OBJECTIVE: NH3 plasma was used for surface modification and binding of amine groups on the PTFE surface. Collagen was immobilized on the plasma-treated PTFE in order to enable it to support enhanced cell adhesion and growth.

METHODS: PTFE was exposed to NH3 plasma and collagen was immobilized on the NH3 plasma-treated surface. ATR-IR, SEM, EDXA and contact angle were conducted to determine the composition, microstructure and wettability of samples. The cytocompatibility of the samples was assessed via the growth HUVEC cells using MTT assay.

RESULTS: Plasma treatment resulted in an incorporation of functional groups, containing N2 and O2 that caused the PTFE surface to become hydrophilic with contact angle 68°. Also, a reduction in F/C ratio was observed after collagen immobilization that indicates the presence of collagen. Cells proliferated in greater numbers on the collagen immobilized-PTFE as compared to the plasma-treated one.

CONCLUSIONS: Plasma treatment incorporates functional polar moieties on the PTFE surface, causing enhanced wettability, collagen immobilization and cell viability. Collagen-immobilized PTFE may offer a valuable solution in biomedical applications such as vessel grafts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app