Add like
Add dislike
Add to saved papers

Point spread function based image reconstruction in optical projection tomography.

As a result of the shallow depth of focus of the optical imaging system, the use of standard filtered back projection in optical projection tomography causes space-variant tangential blurring that increases with the distance to the rotation axis. We present a novel optical tomographic image reconstruction technique that incorporates the point spread function of the imaging lens in an iterative reconstruction. The technique is demonstrated using numerical simulations, tested on experimental optical projection tomography data of single fluorescent beads, and applied to high-resolution emission optical projection tomography imaging of an entire zebrafish larva. Compared to filtered back projection our results show greatly reduced radial and tangential blurring over the entire [Formula: see text] mm2 field of view, and a significantly improved signal to noise ratio.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app