Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Human Bronchial Epithelial Cell-derived Factors from Severe Asthmatic Subjects Stimulate Eosinophil Differentiation.

Activated bronchial epithelial cells (BEC) release various alarmins, including thymic stromal lymphopoietin (TSLP), that drive type 2 inflammation. We hypothesize that BEC-derived factors promote in situ eosinophil differentiation and maturation, a process that is driven by an IL-5-rich microenvironment in asthmatic airways. To assess the eosinophilopoietic potential of epithelial-derived factors, eosinophil/basophil colony forming units (Eo/B-CFU) were enumerated in 14-day methylcellulose cultures of blood-derived nonadherent mononuclear cells incubated with BEC supernatants (BECSN) from healthy nonatopic controls (n = 8), mild atopic asthmatics (n = 9), and severe asthmatics (n = 5). Receptor-blocking antibodies were used to evaluate the contribution of alarmins. Modulation of the mRNA expression of transcription factors that are crucial for eosinophil differentiation was evaluated. BECSN stimulated the clonogenic expansion of eosinophil progenitors in vitro. In the presence of IL-5, Eo/B-CFU numbers were significantly greater in cocultures of BESCN from severe asthmatics compared with other groups. This was attenuated in the presence of a TSLP (but not an IL-33) receptor-blocking antibody. Recombinant human TSLP (optimal at 100 pg/ml) stimulated Eo/B-CFU growth, which was significantly enhanced in the presence of IL-5 (1 ng/ml). Overnight culture of CD34+ cells with IL-5 and TSLP synergistically increased GATA-binding factor 2 and CCAAT/enhancer-binding protein α mRNA expression. The eosinophilopoietic potential of factors derived from BEC is increased in severe asthma. Our data suggest that TSLP is a key alarmin that is produced by BECs and promotes in situ eosinophilopoiesis in a type 2-rich microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app