JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Small-Angle X-ray Scattering Data in Combination with RosettaDock Improves the Docking Energy Landscape.

We have performed a benchmark to evaluate the relative success of using small-angle X-ray scattering (SAXS) data as constraints (hereafter termed SAXSconstrain ) in the RosettaDock protocol (hereafter termed RosettaDockSAXS ). For this purpose, we have chosen 38 protein complex structures, calculated the theoretical SAXS data for the protein complexes using the program CRYSOL, and then used the SAXS data as constraints. We further considered a few examples where crystal structures and experimental SAXS data are available. SAXSconstrain were added to the protocol in the initial, low-resolution docking step, allowing fast rejection of complexes that violate the shape restraints imposed by the SAXS data. Our results indicate that the implementation of SAXSconstrain in general reduces the sampling space of possible protein-protein complexes significantly and can indeed increase the probability of finding near-native protein complexes. The methodology used is based on rigid-body docking and works for cases where no or minor conformational changes occur upon binding of the docking partner. In a wider perspective, the strength of RosettaDockSAXS lies in the combination of low-resolution structural information on protein complexes in solution from SAXS experiments with protein-protein interaction energies obtained from RosettaDock, which will allow the prediction of unknown three-dimensional atomic structures of protein-protein complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app