Add like
Add dislike
Add to saved papers

Layered Double Hydroxides: Potential Release-on-Demand Fertilizers for Plant Zinc Nutrition.

A novel zinc (Zn) fertilizer concept based on Zn-doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthesized, their chemical composition was analyzed, and their nutrient release was studied in buffered solutions with different pH values. Uptake of Zn by barley (Hordeum vulgare cv. Antonia) was evaluated in short- (8 weeks), medium- (11 weeks), and long-term (28 weeks) experiments in quartz sand and in a calcareous soil enriched with Zn-doped Mg-Fe-LDHs. The Zn release rate of the Zn-doped Mg-Fe-LDHs was described by a first-order kinetics equation showing maximum release at pH 5.2, reaching approximately 45% of the total Zn content. The Zn concentrations in the plants receiving the LDHs were between 2- and 9.5-fold higher than those in plants without Zn addition. A positive effect of the LDHs was also found in soil. This work documents the long-term Zn release capacity of LDHs complying with a release-on-demand behavior and serves as proof-of-concept that Zn-doped Mg-Fe-LDHs can be used as Zn fertilizers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app