Add like
Add dislike
Add to saved papers

Highly Stretchable, Ultrasensitive, and Wearable Strain Sensors Based on Facilely Prepared Reduced Graphene Oxide Woven Fabrics in an Ethanol Flame.

The recent booming development of wearable electronics urgently calls for high-performance flexible strain sensors. To date, it is still a challenge to manufacture flexible strain sensors with superb sensitivity and a large workable strain range simultaneously. Herein, a facile, quick, cost-effective, and scalable strategy is adopted to fabricate novel strain sensors based on reduced graphene oxide woven fabrics (GWF). By pyrolyzing commercial cotton bandages coated with graphene oxide (GO) sheets in an ethanol flame, the reduction of GO and the pyrolysis of the cotton bandage template can be synchronously completed in tens of seconds. Due to the unique hierarchical structure of the GWF, the strain sensor based on GWF exhibits large stretchability (57% strain) with high sensitivity, inconspicuous drift, and durability. The GWF strain sensor is successfully used to monitor full-range (both subtle and vigorous) human activities or physical vibrational signals of the local environment. The present work offers an effective strategy to rapidly prepare low-cost flexible strain sensors with potential applications in the fields of wearable electronics, artificial intelligence devices, and so forth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app