Add like
Add dislike
Add to saved papers

Systemic Treatment with a miR-146a Mimic Suppresses Endotoxin Sensitivity and Partially Protects Mice from the Progression of Acute Graft-versus-Host Disease.

Acute GVHD (aGVHD) is driven by interactions between the allogenic T cell response, inflammation, tissue injury and microbial products that enter the circulation when protective barriers such as the intestinal epithelium become compromised. Mice with aGVHD become hypersensitive to LPS, secreting large quantities of inflammatory mediators that exacerbate tissue injury. We hypothesized that microRNA (miR) modulators could be used in vivo to mitigate LPS hypersensitivity, altering the course of aGVHD. Using the C57BL/6 → (C57BL/6 × DBA/2)F1 -hybrid model of aGVHD, we measured intestinal permeability over time and used a qPCR array to detect concomitant changes in the expression levels of certain microRNAs (miRs) in the intestine. Large increases in permeability were seen on day 15, when endotoxemia becomes detectable and GVHD-associated histopathological lesions develop. Amongst the miRs with altered expression levels were some that regulate sensitivity to endotoxin. We chose to focus on miR-146a and treated recipient mice systemically with a miR-146a mimic early in the GVH reaction. This led to a reduction in the burst of IFNγ that likely plays a priming role in the mechanism underlying heightened sensitivity to endotoxin. LPS-induced TNFα release and GVHD-associated weight loss were also diminished and survival was prolonged. In summary, systemic treatment with a miR-146a mimic dampens the heightened sensitivity to LPS that occurs concomitantly with increased intestinal permeability and provides partial protection from the progression of acute GVHD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app