JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Induction of Metallothionein in Rat Liver by Zinc Exposure: A Dose and Time Dependent Study.

Protein Journal 2017 October
Metallothioneins (MTs) are low molecular weight ubiquitous metalloproteins with high cysteine (thiol) content. The intracellular concentration of zinc (Zn) is tightly regulated and MT plays a crucial role in it. The present study investigates the relationship between the Zn status (as a function of Zn concentration and time) in the rat liver and the occurrence of hepatic MT. For dose dependent study, four experimental groups, one control and three receiving different levels of metal supplementation, were chosen [Group 1 control and Group 2, Group 3, Group 4 receiving subcutaneous dose of 10, 50 and 100 mg of Zn/kg body weight (in the form of ZnSO4 ·7H2 O), respectively]. For the time dependent expression of MT, again four experimental groups, i.e. Group 5 control and Group 6, Group 7, Group 8 receiving 50 mg of Zn/kg body weight (in the form of ZnSO4 ·7H2 O) subcutaneously and sacrificed at different time intervals after last injection i.e. 6, 18, 48 h, respectively were chosen. Isolation of MT was done by using combination of gel filtration and ion exchange chromatography while characterization of MT fraction was carried in the wavelength range 200-400 nm. Expression of MT was studied by using Western blot analysis. The results revealed that the MT expression increases with increasing the dose of Zn administered and maximum at 18 h after last Zn injection. Accumulation of MT with increase dose would help in maintaining the intracellular Zn concentration by its sequestration which further reduces the possibility of undesirable binding of Zn to other proteins significantly and maintains Zn homeostasis. The maximum expression of MT at 18 h is indicative of its half life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app