Add like
Add dislike
Add to saved papers

FISH-based mitotic and meiotic diakinesis karyotypes of Morus notabilis reveal a chromosomal fusion-fission cycle between mitotic and meiotic phases.

Scientific Reports 2017 August 30
Mulberry (Morus spp.), in family Moraceae, is a plant with important economic value. Many polyploid levels of mulberry have been determined. In the present study, the fluorescence in situ hybridization (FISH) technique was applied in Morus notabilis, using four single-copy sequences, telomere repeats, and 5S and 25S rDNAs as probes. All the mitotic chromosomes were clearly identified and grouped into seven pairs of homologous chromosomes. Three dot chromosome pairs were distinguished by the FISH patterns of the 25S rDNA probe and a simple sequence repeat (SSR2524). According to the FISH signals, chromosome length and morphology, detailed meiotic diakinesis karyotype was constructed. Interestingly, only six bivalent chromosomes were observed in diakinesis cells. The 25S rDNA probe was used to illustrate chromosome alterations. The results indicated that mitotic chromosomes 5 and 7 fused into diakinesis chromosome 5 during the meiotic phase. In mitotic cells, the fused chromosome 5 broke into chromosomes 5 and 7. A chromosomal fusion-fission cycle between the meiotic and mitotic phases in the same individual is reported here for the first time. This finding will contribute to the understanding of karyotype evolution in plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app