Add like
Add dislike
Add to saved papers

SDE5, a putative RNA export protein, participates in plant innate immunity through a flagellin-dependent signaling pathway in Arabidopsis.

Scientific Reports 2017 August 30
In eukaryotes, RNA silencing, mediated by small interfering RNAs, is an evolutionarily widespread and versatile silencing mechanism that plays an important role in various biological processes. Increasing evidences suggest that various components of RNA silencing pathway are involved in plant defense machinery against microbial pathogens in Arabidopsis thaliana. Here, we show genetic and molecular evidence that Arabidopsis SDE5 is required to generate an effective resistance against the biotrophic bacteria Pseudomonas syringae pv. tomato DC3000 and for susceptibility to the necrotrophic bacteria Erwinia caratovora pv. caratovora. SDE5, encodes a putative mRNA export factor that is indispensable for transgene silencing and the production of trans-acting siRNAs. SDE5 expression is rapidly induced by exogenous application of phytohormone salicylic acid (SA), methyl jasmonate (MeJA), phytopathogenic bacteria, and flagellin. We further report that SDE5 is involved in basal plant defense and mRNA export. Our genetic data suggests that SDE5 and Nonexpressor of PR Gene1 (NPR1) may contribute to the same SA-signaling pathway. However, SDE5 over-expressing transgenic plant exhibits reduced defense responsive phenotype after flagellin treatment. Taken together, these results support the conclusion that SDE5 contributes to plant innate immunity in Arabidopsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app