Add like
Add dislike
Add to saved papers

MRI detects protective effects of DAPT treatment with modulation of microglia/macrophages at subacute and chronic stages following cerebral ischemia.

Notch homolog 1 (Notch 1) signaling is regarded as a potential therapeutic target for modulating the inflammatory response and exhibiting neuroprotective effects in cerebral injury following stroke. N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t‑butylester (DAPT) efficiently inhibits activation of the Notch 1 signaling pathway in microglia and may protect brain tissue from ischemic damage. However, the temporal proliferation and morphological alterations of microglia/macrophages throughout progression of the disease, as well as the comprehensive alterations of the whole brain following DAPT treatment, remain to be elucidated. The present study evaluated the temporal proliferation and the morphological alterations of microglia/macrophages over the period of the subacute and chronic stages, in addition to dynamic alterations of brain tissue, using the magnetic resonance imaging (MRI) method, following DAPT treatment. Sprague‑Dawley rats (n=40) were subjected to 90 min of middle cerebral artery occlusion and were treated with DAPT (n=20) or acted as controls with no treatment (n=20). The two groups of rats underwent MRI scans prior to the induction of stroke symptoms and at 24 h, 7, 14, 21 and 28 days following the stroke. A total of five rats from each group were sacrificed at 7, 14, 21 and 28 days following induction of stroke. Compared with control rats, the MRI data of the ipsilateral striatum in treated rats revealed ameliorated brain edema at the subacute stage and recovered brain tissue at the chronic stage. In addition to this, treatment attenuated the round‑shape and promoted a ramified‑shape of microglia/macrophages. The present study confirmed the protective effect of DAPT treatment by dynamically monitoring the cerebral alterations and indicated the possibility of DAPT treatment to alter microglial characteristics to induce a protective effect, via inhibition of the Notch signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app