Add like
Add dislike
Add to saved papers

Effect of ozonation on the characteristics of effluent organic matter fractions and subsequent associations with disinfection by-products formation.

Ozonation could be used in advanced wastewater treatment plants to reduce the precursors of disinfection by-products (DBPs), or for disinfection and oxidation of trace organic compounds. Detailed analysis of effluent organic matter (EfOM) is intrinsic to the understanding of impact of ozonation on the characterization variation of EfOM, which is closely related with DBPs formation during subsequent chlorination. In this study, the raw as well as oxidized EfOM with ozone were fractionated into hydrophobic acids, neutrals and bases, and hydrophilic acids, neutrals and bases. Results indicated that ozonation increased the proportion of hydrophilic fractions in EfOM, especially of hydrophilic acids, which resulted in increased specific haloacetic acids formation potential (HAAFP) in the subsequent chlorination. Although ozonation decreased the total organic carbon and SUVA254 of EfOM and most isolated fractions, further ozonation increased the SUVA of hydrophilic acids after the initial decrease. This was in accordance with the chemical structures analysis with FTIR, which showed the relative abundance of unsaturated structures such as CO bonds in hydrophilic fractions increased with further ozonation. Furthermore, specific trihalomethanes formation potential (THMFP) of each fraction decreased after initial pre-ozonation but increased with different extent with further ozonation. While for HAAs, pre-ozonation of hydrophilic acids significantly increased the dichloroacetic acid (DCAA) formation potential. In brief, EfOM containing a relatively high content of aromatic structures i.e. SUVA254 and aliphatic structures yielded a remarkably high specific DBPFP. Further mineralization of organic fractions and specific increased formation of aliphatic CH structures by further ozonation caused the increased DBPFPs especially DCAAFP during subsequent chlorination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app