Add like
Add dislike
Add to saved papers

Developmental fluoride exposure influenced rat's splenic development and cell cycle via disruption of the ERK signal pathway.

Chemosphere 2017 November
Excessive fluoride exposure has been reported to cause damage to spleen. Neonatal period is characterized by rapid proliferation and differentiation of lymphocyte in the spleen. Children may be more sensitive to the toxicity of fluoride compared to the adults. The aim of this study was to investigate the effects of postnatal exposure (from neonatal period to early adulthood) to fluoride on the development of spleen on a regular basis and the underlying signal pathway. Results showed a marked decrease in spleen weight index and altered morphology in the spleen of fluoride-treated group on PND-84, which reflected fluoride inhibition of the development of spleen. Fluoride exposure induced cell cycle arrest of splenocytes and decreased the mRNA expression of IL-2, which indicated compromised baseline lymphocyte proliferation in the spleen. Time course research from 3-wk-of-age until 12-wk-of-age showed an adverse and cumulative impact of fluoride on the development of spleen. In view of the key role of MAPK/ERK pathway in lymphocyte development, Raf-1/MEK-1/ERK-2/c-fos mRNA expression and ERK/p-ERK protein expression were detected. Results showed despite a transitory increase in mRNA expression from PND-42 to PND-63 in fluoride-treated group, the expression of these genes on PND-84 decreased significantly compared with PND-42 or PND-63. NaF significantly inhibited the phosphorylation of ERK protein on PND-84. Taken together, these results emphasized the vital role of ERK pathway in the interfered development of spleen induced by a high dose of fluoride exposure in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app