Add like
Add dislike
Add to saved papers

Low-Noise and Large-Linear-Dynamic-Range Photodetectors Based on Hybrid-Perovskite Thin-Single-Crystals.

Advanced Materials 2017 October
Organic-inorganic halide perovskites are promising photodetector materials due to their strong absorption, large carrier mobility, and easily tunable bandgap. Up to now, perovskite photodetectors are mainly based on polycrystalline thin films, which have some undesired properties such as large defective grain boundaries hindering the further improvement of the detector performance. Here, perovskite thin-single-crystal (TSC) photodetectors are fabricated with a vertical p-i-n structure. Due to the absence of grain-boundaries, the trap densities of TSCs are 10-100 folds lower than that of polycrystalline thin films. The photodetectors based on CH3 NH3 PbBr3 and CH3 NH3 PbI3 TSCs show low noise of 1-2 fA Hz-1/2 , yielding a high specific detectivity of 1.5 × 1013 cm Hz1/2 W-1 . The absence of grain boundaries reduces charge recombination and enables a linear response under strong light, superior to polycrystalline photodetectors. The CH3 NH3 PbBr3 photodetectors show a linear response to green light from 0.35 pW cm-2 to 2.1 W cm-2 , corresponding to a linear dynamic range of 256 dB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app