Add like
Add dislike
Add to saved papers

Identifying species at coextinction risk when detection is imperfect: Model evaluation and case study.

Losing a species from a community can cause further extinctions, a process also known as coextinction. The risk of being extirpated with an interaction partner is commonly inferred from a species' host-breadth, derived from observing interactions between species. But observational data suffers from imperfect detection, making coextinction estimates highly unreliable. To address this issue and to account for data uncertainty, we fit a hierarchical N-mixture model to individual-level interaction data from a mutualistic network. We predict (1) with how many interaction partners each species interacts (to indicate their coextinction risk) and (2) how completely the community was sampled. We fit the model to simulated interactions to investigate how variation in sampling effort, interaction probability, and animal abundances influence model accuracy and apply it to an empirical dataset of flowering plants and their insect visitors. The model performed well in predicting the number of interaction partners for scenarios with high abundances, but indicated high parameter uncertainty for networks with many rare species. Yet, model predictions were generally closer to the true value than the observations. Our mutualistic plant-insect community most closely resembled the scenario of high interaction rates with low abundances. Median estimates of interaction partners were frequently much higher than the empirical data indicate, but uncertainty was high. Our analysis suggested that we only detected 14-59% of the flower-visiting insect species, indicating that our study design, which is common for pollinator studies, was inadequate to detect many species. Imperfect detection strongly affects the inferences from observed interaction networks and hence, host specificity, specialisation estimates and network metrics from observational data may be highly misleading for assessing a species' coextinction risks. Our study shows how models can help to estimate coextinction risk, but also indicates the need for better data (i.e., intensified sampling and individual-level observations) to reduce uncertainty.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app