Add like
Add dislike
Add to saved papers

Robust Adaptive Lasso method for parameter's estimation and variable selection in high-dimensional sparse models.

High dimensional data are commonly encountered in various scientific fields and pose great challenges to modern statistical analysis. To address this issue different penalized regression procedures have been introduced in the litrature, but these methods cannot cope with the problem of outliers and leverage points in the heavy tailed high dimensional data. For this purppose, a new Robust Adaptive Lasso (RAL) method is proposed which is based on pearson residuals weighting scheme. The weight function determines the compatibility of each observations and downweight it if they are inconsistent with the assumed model. It is observed that RAL estimator can correctly select the covariates with non-zero coefficients and can estimate parameters, simultaneously, not only in the presence of influential observations, but also in the presence of high multicolliearity. We also discuss the model selection oracle property and the asymptotic normality of the RAL. Simulations findings and real data examples also demonstrate the better performance of the proposed penalized regression approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app