Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Whole-Body Imaging of Tissue-specific Insulin Sensitivity and Body Composition by Using an Integrated PET/MR System: A Feasibility Study.

Radiology 2018 January
Purpose To develop, evaluate, and demonstrate the feasibility of a whole-body protocol for simultaneous assessment of tissue-specific insulin-mediated fluorine 18 (18 F) fluorodeoxyglucose (FDG) influx rates, tissue depots, and whole-body insulin sensitivity (referred to as the M value). Materials and Methods An integrated positron emission tomography (PET)/magnetic resonance (MR) imaging system combined with hyperinsulinemic euglycemic clamp (HEC) was used. Dynamic whole-body PET imaging was used to determine the insulin-mediated 18 F-FDG tissue influx rate (Ki ) in the whole-body region by using the Patlak method. M value was determined with the HEC method at PET imaging. Tissue depots were quantified by using water-fat separated MR imaging and manual segmentations. Feasibility of the imaging protocol was demonstrated by using five healthy control participants and five patients with type 2 diabetes. Associations between M value and Ki were studied in multiple tissues by using the Pearson correlation. Results Positive correlations were found between M value and Ki in multiple tissues: the gluteus muscle (r = 0.875; P = .001), thigh muscle (r = 0.903; P , .001), calf muscle (r = 0.825; P = .003), and abdominal visceral adipose tissue (r = 0.820; P = .004). A negative correlation was found in the brain (r = 20.798; P = .006). The MR imaging-based method for quantification of tissue depots was feasible for determining adipose tissue volumes and fat fractions. Conclusion This PET/MR imaging protocol may be feasible for simultaneous assessment of tissue-specific insulin-mediated 18 F-FDG influx rates, tissue depots, and M value. © RSNA, 2017 Online supplemental material is available for this article.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app