Add like
Add dislike
Add to saved papers

Glycosidase Inhibition by Multivalent Presentation of Heparan Sulfate Saccharides on Bottlebrush Polymers.

Biomacromolecules 2017 October 10
We report herein the first-time exploration of the attachment of well-defined saccharide units onto a synthetic polymer backbone for the inhibition of a glycosidase. More specifically, glycopolymers endowed with heparan sulfate (HS) disaccharides were established to inhibit the glycosidase, heparanase, with an IC50 value in the low nanomolar range (1.05 ± 0.02 nm), a thousand-fold amplification over its monovalent counterpart. The monomeric moieties of these glycopolymers were designed in silico to manipulate the well-established glycotope of heparanase into an inhitope. Studies concluded that (1) the glycopolymers are hydrolytic stable toward heparanase, (2) longer polymer length provides greater inhibition, and (3) increased local saccharide density (monoantennary vs diantennary) is negligible due to hindered active site of heparanase. Furthermore, HS oligosaccharide and polysaccharide controls illustrate the enhanced potency of a multivalent scaffold. Overall, the results on these studies of the multivalent presentation of saccharides on bottlebrush polymers serve as the platform for the design of potent glycosidase inhibitors and have potential to be applied to other HS-degrading proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app