Add like
Add dislike
Add to saved papers

Unveiling Structurally Engineered Carrier Dynamics in Hybrid Quasi-Two-Dimensional Perovskite Thin Films toward Controllable Emission.

Quasi-two-dimensional Ruddlesden-Popper perovskites driving carrier self-separation have rapidly advanced the development of high-performance optoelectronic devices. However, insightful understanding of carrier dynamics in the perovskites is still inadequate. The distribution of multiple perovskite phases, crucial for carrier separation, is controversial. Here we report a systematic study on carrier dynamics of spin-coated (C6 H5 CH2 CH2 NH3 )2 (CH3 NH3 )n-1 Pbn I3n+1 (n = 3 and 5) perovskite thin films. Efficient electrons transfer from small-n to large-n perovskite phases, and holes transfer reversely with time scales from ∼0.3 to 30.0 ps. The multiple perovskite phases are arranged perpendicularly to substrate from small to large n and also coexist randomly in the same horizontal planes. Further, the carrier separation dynamics is tailored by engineering the crystalline structure of the perovskite film, which leads to controllable emission properties. These results have important significance for the design of optoelectronic devices from solar cells, light-emitting diodes, lasers, and so forth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app