Add like
Add dislike
Add to saved papers

Microstructural Abnormalities of Basal Ganglia and Thalamus in Bipolar and Unipolar Disorders: A Diffusion Kurtosis and Perfusion Imaging Study.

OBJECTIVE: Bipolar disorder (BD) is often misdiagnosed as unipolar depression (UD), leading to mistreatment and poor clinical outcomes. However, little is known about the similarities and differences in subcorticalgray matter regions between BD and UD.

METHODS: Thirty-five BD patients, 30 UD patients and 40 healthy controls underwent diffusional kurtosis imaging (DKI) and three dimensional arterial spin labeling (3D ASL). The parameters including mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr) and cerebral blood flow (CBF) were measured by using regions-of-interest analysis in the caudate, putamen and thalamus of the subcortical gray matter regions.

RESULTS: UD exhibited differences from controls for DKI measures and CBF in the left putamen and caudate. BD showed differences from controls for DKI measures in the left caudate. Additionally, BD showed lower Ka in right putamen, higher MD in right caudate compared with UD. Receiver operating characteristic analysis revealed the Kr of left caudate had the highest predictive power for distinguishing UD from controls.

CONCLUSION: The two disorders may have overlaps in microstructural abnormality in basal ganglia. The change of caudate may serve as a potential biomarker for UD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app