Add like
Add dislike
Add to saved papers

Highly Polymorphic Microsatellite Markers for the Assessment of Male Reproductive Skew and Genetic Variation in Critically Endangered Crested Macaques (Macaca nigra).

Genetic analyses based on noninvasively collected samples have become an important tool for evolutionary biology and conservation. Crested macaques (Macaca nigra), endemic to Sulawesi, Indonesia, are important for our understanding of primate evolution as Sulawesi macaques represent an exceptional example of primate adaptive radiation. Crested macaques are also Critically Endangered. However, to date we know very little about their genetics. The aim of our study was to find and validate microsatellite markers useful for evolutionary, conservation, and other genetic studies on wild crested macaques. Using fecal samples of 176 wild macaques living in the Tangkoko Reserve, Sulawesi, we identified 12 polymorphic microsatellite loci through cross-species polymerase chain reaction amplification with later modification of some of these primers. We tested their suitability by investigating and exploring patterns of paternity, observed heterozygosity, and evidence for inbreeding. We assigned paternity to 63 of 65 infants with high confidence. Among cases with solved paternity, we found no evidence of extragroup paternity and natal breeding. We found a relatively steep male reproductive skew B index of 0.330 ± 0.267; mean ± SD) and mean alpha paternity of 65% per year with large variation across groups and years (29-100%). Finally, we detected an excess in observed heterozygosity and no evidence of inbreeding across our three study groups, with an observed heterozygosity of 0.766 ± 0.059 and expected heterozygosity of 0.708 ± 0.059, and an inbreeding coefficient of -0.082 ± 0.035. Our results indicate that the selected markers are useful for genetic studies on wild crested macaques, and possibly also on other Sulawesi and closely related macaques. They further suggest that the Tangkoko population of crested macaques is still genetically variable despite its small size, isolation, and the species' reproductive patterns. This gives us hope that other endangered primate species living in small, isolated populations may also retain a healthy gene pool, at least in the short term.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app