Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Upconversion Nanoprobes for the Ratiometric Luminescent Sensing of Nitric Oxide.

By taking advantage of the optical properties of upconversion nanoparticles (UCNPs), we have designed a luminescence ratiometric nanosensor for measuring nitric oxide (NO) in biological fluids, live cells, and tissues. This nanoconjugate consists of a UCNP core with two strong fluorescence emission peaks at 540 and 656 nm as the upconversion fluorophore, NO-reactive rhodamine B-derived molecules (RdMs) encapsulated within the mesopores of the mSiO2 shell, and a β-cyclodextrin (βCD) layer on the exterior of the particle. Reaction of the analyte with the O-phenylenediamine of the RdM induces opening of the spiro-ring and is accompanied by an appearance of a strong rhodamine B (RdB) absorption band between 500 and 600 nm, which has spectral overlap with the green emission (540 nm) of the UCNPs. This results in an increase in the I656 /I540 ratio and quantitatively correlates with [NO]. The assay is validated under clean buffer conditions as well as inserum and liver tissue slices obtained from mouse models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app