Add like
Add dislike
Add to saved papers

Fatigue strength of yttria-stabilized zirconia polycrystals: Effects of grinding, polishing, glazing, and heat treatment.

This study aimed to evaluate and compare the effect of different surface post-processing treatments (polishing, heat treatment, glazing, polishing + heat treatment and polishing + glazing) on the superficial characteristics (micromorphology and roughness), phase transformation and fatigue strength of a Y-TZP ceramic ground with diamond bur. Discs of Y-TZP ceramic were manufactured (ISO:6872-2015; final dimensions of 15mm in diameter and 1.2 ± 0.2mm in thickness) and randomly allocated according to the surface condition: Ctrl - as-sintered; Gr - ground with coarse diamond bur; Gr+HT - ground and subjected to the heat treatment; Gr+Pol - ground and polished; Gr+Pol+HT - ground, polished and heat treated; Gr+Gl - ground and glazed; Gr+Pol+Gl - ground, polished and glazed. The following analyses were performed: roughness (n = 25), surface topography (n = 2), phase transformation (n = 2) and fatigue strength by staircase method (n = 20). All treatments influenced to some extent the surface characteristics of Y-TZP, being that polishing reduced the surface roughness, the m-phase content and improved the fatigue strength; glazing led to the lowest roughness values (Ra and Rz), although it showed the worst fatigue strength; heat treatment showed limited effect on surface roughness, led to complete reversion of the existing m-phase content to t-phase, without enhancing fatigue performance. Thus, a polishing protocol after clinic adjustment (grinding) of monolithic restorations based on polycrystalline zirconia material is mandatory for surface characteristics and fatigue performance improvements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app